翻訳と辞書
Words near each other
・ Kerr (surname)
・ Kerr Arboretum and Botanical Area
・ Kerr Avon
・ Kerr baronets
・ Kerr Building
・ Kerr cell shutter
・ Kerr City Historic District
・ Kerr City, Florida
・ Kerr Community Center
・ Kerr County, Texas
・ Kerr Creek
・ Kerr Cuhulain
・ Kerr Dam
・ Kerr Drug
・ Kerr Eby
Kerr effect
・ Kerr Grant
・ Kerr Hall
・ Kerr House
・ Kerr Inlet
・ Kerr Lake
・ Kerr Lake State Recreation Area
・ Kerr metric
・ Kerr Mill
・ Kerr Neilson
・ Kerr Place
・ Kerr Point
・ Kerr Scott Farm
・ Kerr Smith
・ Kerr Stuart steam railmotor


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kerr effect : ウィキペディア英語版
Kerr effect

The Kerr effect, also called the quadratic electro-optic effect (QEO effect), is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the ''square'' of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by John Kerr, a Scottish physicist.
Two special cases of the Kerr effect are normally considered, these being the Kerr electro-optic effect, or DC Kerr effect, and the optical Kerr effect, or AC Kerr effect.
==Kerr electro-optic effect==
The Kerr electro-optic effect, or DC Kerr effect, is the special case in which a slowly varying external electric field is applied by, for instance, a voltage on electrodes across the sample material. Under this influence, the sample becomes birefringent, with different indices of refraction for light polarized parallel to or perpendicular to the applied field. The difference in index of refraction, ''Δn'', is given by
:\Delta n = \lambda K E^2,\
where ''λ'' is the wavelength of the light, ''K'' is the ''Kerr constant'', and ''E'' is the strength of the electric field. This difference in index of refraction causes the material to act like a waveplate when light is incident on it in a direction perpendicular to the electric field. If the material is placed between two "crossed" (perpendicular) linear polarizers, no light will be transmitted when the electric field is turned off, while nearly all of the light will be transmitted for some optimum value of the electric field. Higher values of the Kerr constant allow complete transmission to be achieved with a smaller applied electric field.
Some polar liquids, such as nitrotoluene (C7H7NO2) and nitrobenzene (C6H5NO2) exhibit very large Kerr constants. A glass cell filled with one of these liquids is called a ''Kerr cell''. These are frequently used to modulate light, since the Kerr effect responds very quickly to changes in electric field. Light can be modulated with these devices at frequencies as high as 10 GHz. Because the Kerr effect is relatively weak, a typical Kerr cell may require voltages as high as 30 kV to achieve complete transparency. This is in contrast to Pockels cells, which can operate at much lower voltages. Another disadvantage of Kerr cells is that the best available material, nitrobenzene, is poisonous. Some transparent crystals have also been used for Kerr modulation, although they have smaller Kerr constants.
In media that lack inversion symmetry, the Kerr effect is generally masked by the much stronger Pockels effect. The Kerr effect is still present, however, and in many cases can be detected independently of Pockels effect contributions.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kerr effect」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.